If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-11x-140=0
a = 6; b = -11; c = -140;
Δ = b2-4ac
Δ = -112-4·6·(-140)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-59}{2*6}=\frac{-48}{12} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+59}{2*6}=\frac{70}{12} =5+5/6 $
| 3.8m+2.7=4.5+2.2m | | -2=6+x/3 | | -8/7=4v | | 24-4x=128 | | 2x-10=4(x+6) | | 6q-6q+2q+4q-q=10 | | 5x+3(2x+1)=3+ | | -1x^2/16+386x+1/4=0 | | 9x-10=15x | | -x^2/16+386x+1/4=0 | | -6/7u=-12 | | 7x-3(x+5)=1 | | 4x-(9x+6)=2x-48 | | 15n-20=15 | | g+9g=10g | | x^2-6x+9-4/x=0 | | 0.02x-0.01x=37 | | 18=11x-9x | | −8(x+4)+38=13−9x | | (1/5)^x+1=125 | | 10+2p=-8+4p | | -x^/16+386x+1/4=0 | | 44=8y+3y | | 4(6-x)=128 | | 6x-4/x=0 | | -8u=7−8u | | 12−5(x+3)=2x−5 | | 2x-2=12x72 | | 2/3x=9x-1 | | -6−3s=-5s+2 | | 2/38c−2=32c−12 | | -3/4v=-21 |